The neural decoding toolbox

نویسنده

  • Ethan Meyers
چکیده

Population decoding is a powerful way to analyze neural data, however, currently only a small percentage of systems neuroscience researchers use this method. In order to increase the use of population decoding, we have created the Neural Decoding Toolbox (NDT) which is a Matlab package that makes it easy to apply population decoding analyses to neural activity. The design of the toolbox revolves around four abstract object classes which enables users to interchange particular modules in order to try different analyses while keeping the rest of the processing stream intact. The toolbox is capable of analyzing data from many different types of recording modalities, and we give examples of how it can be used to decode basic visual information from neural spiking activity and how it can be used to examine how invariant the activity of a neural population is to stimulus transformations. Overall this toolbox will make it much easier for neuroscientists to apply population decoding analyses to their data, which should help increase the pace of discovery in neuroscience.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

nSTAT: open-source neural spike train analysis toolbox for Matlab.

Over the last decade there has been a tremendous advance in the analytical tools available to neuroscientists to understand and model neural function. In particular, the point process - generalized linear model (PP-GLM) framework has been applied successfully to problems ranging from neuro-endocrine physiology to neural decoding. However, the lack of freely distributed software implementations ...

متن کامل

Decoding magnetoencephalographic rhythmic activity using spectrospatial information

We propose a new data-driven decoding method called Spectral Linear Discriminant Analysis (Spectral LDA) for the analysis of magnetoencephalography (MEG). The method allows investigation of changes in rhythmic neural activity as a result of different stimuli and tasks. The introduced classification model only assumes that each "brain state" can be characterized as a combination of neural source...

متن کامل

The Decoding Toolbox (TDT): a versatile software package for multivariate analyses of functional imaging data

The multivariate analysis of brain signals has recently sparked a great amount of interest, yet accessible and versatile tools to carry out decoding analyses are scarce. Here we introduce The Decoding Toolbox (TDT) which represents a user-friendly, powerful and flexible package for multivariate analysis of functional brain imaging data. TDT is written in Matlab and equipped with an interface to...

متن کامل

FINITE-TIME PASSIVITY OF DISCRETE-TIME T-S FUZZY NEURAL NETWORKS WITH TIME-VARYING DELAYS

This paper focuses on the problem of finite-time boundedness and finite-time passivity of discrete-time T-S fuzzy neural networks with time-varying delays. A suitable Lyapunov--Krasovskii functional(LKF) is established to derive sufficient condition for finite-time passivity of discrete-time T-S fuzzy neural networks. The dynamical system is transformed into a T-S fuzzy model with uncertain par...

متن کامل

"Technical Report" Performance Comparison of IHACRES Model and Artificial Neural Network to Predict the Flow of Sivand River

The accurate determination of river flow in watersheds without sufficient data is one of the major challenges in hydrology. In this regard, given the diversity of existing hydrological models, selection of an appropriate model requires evaluation of the performance of the hydrological models in each region. The objective of this study was to compare the performance of artificial neural network ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2013